Coronavirus Update: Washington College responds to coronavirus outbreak. More Info


James Lipchock

Associate Professor of Chemistry and Department Co-Chair
  • Ph.D., Biophysical Chemistry, 2010
  • Yale University, New Haven, CT
  • M.S., Biophysical Chemistry, 2006 
  • Yale University, New Haven, CT
  • B.A., ACS-Certified Chemistry and Physics, 2004
  • McDaniel College, Westminster, MD

For as long as I can remember I have had a passion for teaching. My experiences as an undergraduate at a small liberal arts college made me eager to return to this environment as a professor. My love for chemistry began in my sophomore year of high school and slowly evolved into my interdisciplinary interests as a biophysical chemist. While my teaching and research center around biological molecules and incorporates spin physics and mathematics, I view all that I do from the lens of a chemist and believe the quantitative and critical thinking skills developed as a chemistry major prepare a student for a wide range of careers, both inside and out of science. 

While every field requires some memorization, what drew me to chemistry is the ability to apply basic principles to answer new questions. My interest in biology began when I realized I could apply fundamental principles in chemistry to understand and predict the behavior of large biomolecules. My goal as a teacher is to help students apply these same principles to answer novel questions in any field that excites their passions.

Each year I teach Chemical Principles of Organic Molecules (CHE 120), Quantitative Chemical Analysis (CHE 220), Chemistry of Biological Compounds (CHE 303), and our Chemistry Senior Seminar (CHE 491). In alternating years I cycle between Biophysical Methods (CHE 405) and a first-year seminar entitled “Ethics and Profit in Globalized Medicine” (FYS 101). Please refer to the course catalog for additional information about these courses or stop by my office to chat.

Professional Experience
  • Associate Professor of Chemistry, 2018-Current
  • Co-Chair, Chemistry Department, 2019-Current
  • Co-Chair, Biochemistry and Molecular Biology, 2019-Current
  • Washington College, Chestertown, MD
  • Laboratory Associate, Summers 2014-Current
    Yale University, New Haven, CT
  • Assistant Professor of Chemistry, 2012-2018
  • Washington College, Chestertown, MD
  • Adjunct Professor of Chemistry, 2011-2012
  • Philadelphia University, Philadelphia, PA
  • Adjunct Professor of Chemistry, 2012
  • Delaware County Community College, Media, PA
  • Lecturer in Chemistry, 2011
  • Ursinus College, Collegeville, PA
  • Postdoctoral Researcher, 2010-2011
  • University of Pennsylvania, Philadelphia, PA


The research in my lab is geared at understanding the function of biomolecules through enzymology and determination of their structure and dynamics. Given the interdisciplinary nature of my research, students working in my lab learn a wide range of techniques, from DNA cloning and mutagenesis to protein expression and purification, kinetics, multidimensional protein NMR spectroscopy and much more. If these techniques sound interesting to you, please read more about the projects below that are currently being explored in my laboratory.

Advancing Drug Design through Allosteric Inhibition of Protein Tyrosine Phosphatase 1B

Protein tyrosine phosphatase 1B (PTP1B) is a human enzyme responsible for removing phosphate groups from phosphotyrosine residues present on substrate proteins. It plays an important role in insulin and leptin signaling, making it an active target for the rational design of drugs for the treatment of diabetes and obesity. Through the use of enzyme kinetics, solution NMR spectroscopy and other biophysical techniques, we are exploring the mechanism of function for known PTP1B inhibitors and identifying new potential sites of inhibition by discovering allosteric networks within PTP1B.

Mechanistic Studies of Phosphohistidine Phosphatase 1

Phosphohistidine phosphatase 1 (PHPT1) is a human enzyme responsible for removing a phosphate group from phosphohistidine residues present on proteins. Unlike most known phosphatases, the phosphohistidine linkage results from a N–P bond, rather than an O–P bond. Given this chemical difference, the mechanism of phosphohistidine phosphatases is believed to be distinct from other known phosphatases. We are interested in better understanding the reaction mechanism of this novel class of enzymes and characterizing the structure of the enzyme-substrate complex.

Bringing Dynamics to the Undergraduate Curriculum

Many undergraduate students are aware of the power of NMR spectroscopy for characterizing organic molecules and even structure determination of proteins and nucleic acids, but the use of NMR spectroscopy to investigate biomolecular motions is often overlooked in the undergraduate curriculum. This is unfortunate because this is arguably the most powerful application of NMR spectroscopy, unmatched by any other technique. I am interested in developing laboratory experiments appropriate for the undergraduate level that would introduce students to this important and active area of research.

Research Opportunities for Students

I am always eager to have hardworking, enthusiastic students join my lab for summer research fellowships, Senior Capstone Experience projects, research for course credit or shadowing opportunities. If you are excited to learn more about the research and techniques utilized in my lab, please send me an email or stop by my office. 

For a list of current and former lab members, please click here.


Underline Indicates Washington College Student

Cui D, Lipchock JM, Brookner D, and Loria JP. “Uncovering the molecular interaction in the catalytic loop that modulate the conformational dynamics in protein tyrosine phosphatase 1B.” Journal of the American Chemical Society, accepted.

Marteel-Parrish AE and Lipchock JM. “Preparing Chemistry Majors for the 21st Century Through a Comprehensive One-Semester Course Focused on Professional Preparation, Contemporary Issues, Scientific Communication, and Research Skills.” Journal of Chemical Education, 2018, 95(1): 68-75.

Cui D, Beaumont V, Ginther PS, Lipchock JM and Loria JP. “Leveraging reciprocity to identify and characterize unknown allosteric sites in protein tyrosine phosphatases.” Journal of Molecular Biology, 2017, 429 (15): 2360-2372.

Lipchock JM, Ginther PS, Douglas BB, Bird KE and Loria JP. “Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.” Biochemistry and Molecular Biology Education, 2017, 45(5): 403-410.

Lipchock JM, Henrickson H, Douglas BB, Bird KE, Ginther PS, Rivalta I, Batista V, Loria JP. “Characterization of PTP1B inhibition by chlorogenic acid and cichoric acid.” Biochemistry, 2017, 56: 96-106.

Lipchock JM and Lipchock SV. “Elucidating concepts in drug design through taste with natural and artificial sweeteners.” Biochemistry and Molecular Biology Education, 2016, 44: 550-554.

Lipchock JM and Loria JP. “Nanometer propagation of millisecond motions in V-type allostery.” Structure, 2010, 18: 1596-1607.

Lipchock JM and Loria JP. “Millisecond dynamics in the allosteric enzyme imidazole glycerol phosphate synthase (IGPS) form Thermotoga maritima.” Journal of Biomolecular NMR, 2009, 45: 73-84.

Lipchock JM and Loria JP. “Monitoring molecular interactions by NMR.” Methods in Molecular Biology, 2009, 490: 115-134.

Lipchock JM and Loria JP “1H, 15N, 13C resonance assignment of imidazole glycerol phosphate (IGP) synthase protein HisF from Thermotoga maritima.” Biomolecular NMR Assignments, 2008, 2: 219-221.

Kroeger Smith MB, Hose MD, Hawkins A, Lipchock J, Farnsworth DW, Rizzo RC, Tirado-Rives J, Arnold E, Zhang W, Hughes SH, Jorgensen WL, Michejda CJ, Smith RH Jr. “Molecular modeling calculations of HIV-1 reverse transcriptase non-nucleoside inhibitors: correlation of binding energy with biological activity for novel 2-aryl-substituted benzimidazole analogs.” Journal of Medicinal Chemistry, 2003, 46: 1940-1947.